Mechanisms and regulation of DNA end resection.

نویسندگان

  • Maria Pia Longhese
  • Diego Bonetti
  • Nicola Manfrini
  • Michela Clerici
چکیده

DNA double-strand breaks (DSBs) are highly hazardous for genome integrity, because failure to repair these lesions can lead to genomic instability. DSBs can arise accidentally at unpredictable locations into the genome, but they are also normal intermediates in meiotic recombination. Moreover, the natural ends of linear chromosomes resemble DSBs. Although intrachromosomal DNA breaks are potent stimulators of the DNA damage response, the natural ends of linear chromosomes are packaged into protective structures called telomeres that suppress DNA repair/recombination activities. Although DSBs and telomeres are functionally different, they both undergo 5'-3' nucleolytic degradation of DNA ends, a process known as resection. The resulting 3'-single-stranded DNA overhangs enable repair of DSBs by homologous recombination (HR), whereas they allow the action of telomerase at telomeres. The molecular activities required for DSB and telomere end resection are similar, indicating that the initial steps of HR and telomerase-mediated elongation are related. Resection of both DSBs and telomeres must be tightly regulated in time and space to ensure genome stability and cell survival.

منابع مشابه

PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection

Double strand breaks (DSBs) are one of the most toxic lesions to cells. DSB repair by the canonical non-homologous end-joining (C-EJ) pathway involves minor, if any, processing of the broken DNA-ends, whereas the initiation of DNA resection channels the broken-ends toward DNA repair pathways using various lengths of homology. Mechanisms that control the resection initiation are thus central to ...

متن کامل

Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection

DNA double strand breaks (DSBs) can be repaired by either recombination-based or direct ligation-based mechanisms. Pathway choice is made at the level of DNA end resection, a nucleolytic processing step, which primes DSBs for repair by recombination. Resection is thus under cell cycle control, but additionally regulated by chromatin and nucleosome remodellers. Here, we show that both layers of ...

متن کامل

Roles of Chromatin insulators in gene regulation and diseases

With advances in genetic science, the dynamic structure of eukaryotic genome is considered as basis of gene expression regulation. Long-distance communication between regulatory elements and target promoters is critical and the mechanisms responsible for this connection are just starting to emerge. Chromatin insulators are key determinants of proper gene regulation and precise organization of c...

متن کامل

Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining.

A DNA double strand break (DSB) is a highly toxic lesion, which can generate genetic instability and profound genome rearrangements. However, DSBs are required to generate diversity during physiological processes such as meiosis or the establishment of the immune repertoire. Thus, the precise regulation of a complex network of processes is necessary for the maintenance of genomic stability, all...

متن کامل

53BP1 regulates DSB repair using Rif1 to control 5' end resection.

The choice between double-strand break (DSB) repair by either homology-directed repair (HDR) or nonhomologous end joining (NHEJ) is tightly regulated. Defects in this regulation can induce genome instability and cancer. 53BP1 is critical for the control of DSB repair, promoting NHEJ, and inhibiting the 5' end resection needed for HDR. Using dysfunctional telomeres and genome-wide DSBs, we ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The EMBO journal

دوره 29 17  شماره 

صفحات  -

تاریخ انتشار 2010